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Fourier acceleration of Langevin molecular dynamics
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Fourier acceleration has been successfully applied to the simulation of lattice field theories for more than a
decade. In this paper, we extend the method to the dynamics of discrete particles moving in a continuum.
Although our method is based on a mapping of the particles’ dynamics to a regular grid so that discrete Fourier
transforms may be taken, it should be emphasized that the introduction of the grid is a purely algorithmic
device and that no smoothing, coarse-graining, or mean-field approximations are made. The method thus can
be applied to the equations of motion of molecular dynamics~MD! or its Langevin or Brownian variants. For
example, in Langevin MD simulations our acceleration technique permits a straightforward spectral decom-
position of forces so that the long-wavelength modes are integrated with a longer time step, thereby reducing
the time required to reach equilibrium or to decorrelate the system in equilibrium. Speedup factors of up to 30
are observed relative to pure~unaccelerated! Langevin MD. As with acceleration of critical lattice models, even
further gains relative to the unaccelerated method are expected for larger systems. Preliminary results for
Fourier-accelerated molecular dynamics are presented in order to illustrate the basic concepts. Possible exten-
sions of the method and further lines of research are discussed.
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I. INTRODUCTION

Molecular dynamics~MD! simulations play an importan
role in our fundamental understanding of the kinetics of m
lecular systems and provide a powerful tool for modeling
wide variety of materials including biomolecules. Althoug
MD simulations have benefited tremendously from advan
in high-performance computing, they suffer from the limit
tion arising from the numerical stiffness inherent in Ne
ton’s equations. The result is that MD studies are gener
restricted to short intervals of real time, from nanoseco
up to a few microseconds, even with heroic computatio
efforts. To overcome this difficulty, there is a growing effo
to develop accelerated MD algorithms.~See, for example
@1–6#.!

In contrast to molecular~or other discrete particle! sys-
tems with a Lagrangian data representation, there is a
siderable variety of acceleration algorithms available
continuum field theories approximated on a regular grid
lattice. For example, grid-based simulations have made
stantial progress with the advent of cluster Monte Ca
methods@7,8#, Fourier acceleration@9#, and multigrid itera-
tive solvers@10#. Because the bulk properties of large agg
gates of molecules can often be described by continuum
chanics, it is intuitively appealing that a correspondi
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method should apply in the molecular~or particulate! frame-
work. Indeed, making this connection between the molecu
and continuum scales is a central goal for multiscale mod
ing projects. In this paper we show how one such continu
tool, namely, Fourier acceleration, can be applied to Lan
vin MD without introducing any coarse-graining or mea
field approximations. The basic ingredient of the method
an exact mapping of the original particulate system ont
regular lattice of displacement fields. Although this mappi
may prove useful in a broader context, we restrict our att
tion to Fourier acceleration~FA! of the Langevin equations
for MD.

The idea of introducing a regular grid into MD is not new
grid-based recursive multipole expansions@11#, for example,
have been used for more than a decade to rapidly com
Coulomb interactions. More recently, hybrid atomisti
continuum techniques, such as the quasicontinuum me
@12#, use finite-element techniques to bridge microscopic a
macroscopic length scales. Most applications of spec
methods to molecular systems, however, have been confi
to the analysis of data~for example, structure and respon
functions!.

By contrast, our procedure uses spectral analysis
modify and accelerate the dynamical evolution of the m
lecular system. Unique to this approach is the mapping of
actual position coordinates to a grid and the ability to inv
the mapping to displace the original off-lattice molecular c
ordinates. The introduction of the grid is a purely algorithm
device and is not tantamount to a coarse-graining or me
field approximation of any kind; that is, the accelerated d
namics is still that of discrete particles. The result is an
celerated, stochastic dynamics that is significantly faster t
©2001 The American Physical Society04-1
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ALEXANDER, BOGHOSIAN, BROWER, AND KIMURA PHYSICAL REVIEW E64 066704
standard Langevin MD, but still exactly preserves the eq
librium distribution. The fundamental trade-off associat
with this approach is that of speed versus faithfulness to
essential kinetics. Both of these desiderata are clearly
cific to the system being studied and the phenomena tha
model should faithfully represent. We stress the concep
differences between this approach and that of FA applie
path integral molecular dynamics~PIMD! @13–15#. In the
PIMD approach the FA is carried out in the frequency a
time discretization of the path integral not in physical a
momemtum space.

The organization of this paper is as follows. Section
describes our procedure for mapping the particulate sys
onto a regular lattice. This mapping is a prerequisite to
application of a Fourier-mode decomposition. In Sec. III
outline the Fourier-accelerated Langevin dynamics on
grid. We demonstrate the method in Sec. IV by applying it
a f4 model at its critical point. We then describe how
apply Fourier acceleration in conjunction with the latti
mapping in Sec. V. As an example, in Sec. VI, we apply
method to the Langevin dynamics of a simple Lennard-Jo
fluid. Extensions of the Fourier-accelerated molecular
namics~FAMD! method and additional applications are d
cussed in Sec. VII.

II. PARTICLE-TO-GRID MAPPING PROCEDURE

There are many ways by which a molecular system can
transformed from~off-lattice! particle coordinates to a fidu
cial grid. Each has its advantages and disadvantages, dep
ing upon the aim of the transformation. In this section
discuss one method that has proved to be particularly us
This is by no means necessarily the optimal mapp
scheme. Others may be superior in terms of performa
~e.g.,@16#!

In one dimension, the simplest mapping procedure is
sort the particles by their position coordinate. Each partici
is given a permuted labeln( i ) so that n( i ),n( j ) if xi
,xj . Whereas thei andj indices are arbitrary labels, devoi
of physical significance, the permuted labels are based on
sequence of particle positions and hence may be though
as lying on a grid with some physical meaning. Becausen( i )
is a permutation, it has inverse functioni (n) such thatn„i
(•)…5•. We now transform to new coordinates by the p
scription Xn5xi (n) . This mapping makes it possible to d
rectly Fourier transform the new position coordinates,

X̃k5
1

L (
n

Xneikn. ~2.1!

Note that this new spatial representation contains preci
the same amount of information as the original data. A
note that because this mapping is merely a geometric
motivated relabeling, all attributes, such as massmi , are
automatically transfered to the new representation.

The multidimensional generalization of this method is n
so straightforward. The problem of sorting the particles
more than one dimension is not well defined. There is, ho
ever, a very good and efficient approximation used by
06670
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merical analysts for load-balancing graphs on multiproces
architectures, known asrecursive coordinate bisection
~RCB! @17#. ~See Fig. 1! To see how this algorithm works
consider a two-dimensional~2D! square domain containing
N5L2 particles, whereL is a power of 2. We first introduce
a two-index labeli5( i x ,i y) for the particles, where

i x~ i !5 i modL, ~2.2!

i y~ i !5~ i 2 i x!/L, ~2.3!

so that

i ~ i!5 i x1~ i y21!L. ~2.4!

Thus the transformation from one-index labelsi to two-index
labelsi is a bijection. We can label the particles’ coordinat
as xi5(xi ,yi) or, equivalently, asxi5(xi ,yi)5(xi ( i) ,yi ( i)).
As with the i labels for the one-dimensional case, these
bels ~both i and i) are assigned arbitrarily and devoid o
physical content.

Whereas it is difficult to see how to order the one-ind
labels i, the RCB method provides a straightforward pr
scription for permuting the two-index labelsi into a new set
of two-index labelsn( i) that are based on the particles’ p
sitions. Again, this function is a permutation, so it has
inversei(n), such thatn„i(•)…5•. The n’s may reasonably
be taken to lie on a regular two-dimensional grid, and he
provide a set of independent variables with respect to wh
the new coordinatesXn[xi(n)5xi „i(n)… can be Fourier trans
formed, just as in the one-dimensional example.

To accomplish this, the physical domain is first divide
into left- and right-hand portions with equal numbers (N/2)
of particles, by sorting the particles on theirx coordinates.
The half with smallerx coordinates will have 1< nx< L/2

FIG. 1. Grid mapping for a two-dimensional Lennard-Jon
fluid by recursive coordinate bisection.
4-2
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FOURIER ACCELERATION OF LANGEVIN MOLECULAR . . . PHYSICAL REVIEW E64 066704
and the half with largerx coordinates will haveL/2,nx
< L. In binary notation, this labeling sets the most sign
cant bit of thenx index to zero or one for the left or right ha
respectively. Next, we sort each set ofN/2 particles by their
y coordinates to obtain four sets ofN/4 particles, likewise
setting the most significant bit in theny . This procedure is
then applied recursively to each of the four boxes withN/4
particles, maintaining the alternation between thex and y
axes. For systems of relatively uniform density, the result
fiducial grid leads to a remarkably regular and local partic
labeling scheme. RCB is an orderN ln N algorithm with
many obvious similarities to fast Fourier transforms.

III. FOURIER-ACCELERATED LANGEVIN DYNAMICS

To demonstrate how Fourier acceleration works, we c
sider in detail a simple~discrete-time! Langevin dynamics.
The Langevin equation of motion for a system ofN particles
is

xi~ t1Dt !5xi~ t !1
f i~ t !

2mi
~Dt !21pi~ t !Dt, ~3.1!

where the N momenta are Gaussian random variab
^pi(t)pj (t8)&5 1

2 kBTmid i , jd t,t81. It is well known that this
dynamics~in the limit of vanishing time step! samples the
canonical-ensemble Boltzmann-Gibbs equilibrium distrib
tion function,

P~xi ,pi !5
1

Z
expF2bS pi•pi

2mi
1V~xi ! D G , ~3.2!

whereb[1/kBT and the force isf i52]V/]xi .
For the moment, we set this result aside and cons

lattice field problems for which Batrouniet al. @9# have
shown how to accelerate the approach to equilibrium in F
rier space. For example, consider fieldsfx(t) on a uniform
grid with sitesx, obeying the equilibrium distribution

P~fx!5
1

Z
e2S(fx), ~3.3!

with actionS. This distribution is a fixed point of the discret
Langevin dynamics~asDt→0),

fx~ t1Dt !5fx~ t !2K
]S~fx!

]fx
~Dt !21hx~ t !Dt, ~3.4!

wherehx(t) are Gaussian random fields. This Markov pr
cess, however, is not the only one which drives the system
the equilibrium in Eq.~3.3!. Indeed, the local dynamics o
Eq. ~3.4! generally exhibits long autocorrelation times ne
critical points. Batrouniet al. @9# have shown how to accel
erate such grid-based Langevin equations using a Fou
decomposition of the dynamics. The FA method depends
the simple observation thatany mobility ~or inverse mass!
matrix may be introduced by the substitutions,K→Kx,x8 and
^hx(t) hx8(t)&5Kx,x8d(t8,t)1, without upsetting the equilib-
rium distribution of the fields. One such choice is a matrixK
06670
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which is diagonal in Fourier space. This choice leads to
celeration if the time steps for the slow~low-wave-number!
modes are amplified:

fx~ t1Dt !5fx~ t !1F 21F K̃~k!FS 2
]S

]fx
D ~Dt !2

1AK̃~k!hkDt G , ~3.5!

whereF represents a Fourier transform. A simple substi
tion of the fieldfx with the position of a particlexi would
allow us to use Fourier methods. The mappings of Sec
provide that substitution.

IV. f4 MODEL

To illustrate the above procedure we apply the FA te
nique to thef4 model at the critical point in two dimensions
It has been shown by Batrouniet al. @9# that critical slowing
down is completely eliminated by FA in a purely Gaussi
model. Of course, in that case, the modes completely
couple in momentum space and each can be integrated i
pendently. For a nonlinear model with mode coupling, it
not guaranteed that FA will work at all. It is also not cleara
priori what the optimal choice of the mass matrix should
that will most rapidly drive the system to equilibrium o
decorrelate the system once in equilibrium.

To gain experience in selecting the mass matrix
FAMD, we first studied a simpler system, namely, thef4

model in two dimensions at criticality. This model provides
qualitative~and in some cases quantitative! description of a
displacive phase transition. The investigation of such tran
tions is one of our long-term goals. Surprisingly, the F
method applied to this system at its critical point has n
been analyzed. However, Batrouni and Svetitsky have s
ied its application to first-order phase transitions in af4

model and found a significant speedup of tunneling betw
minima @18#.

The Hamiltonian is given by@19–21#

bH~@f#!5(
i 51

N F2
u

2
f i

21
x

4
f i

41
1

2 (
m51

d

~f i m
2f i !

2G
5(

i 51

N F ũ

2
f i

21
x

4
f i

42
1

2 (
m51

2d

f if i mG , ~4.1!

where

ũ52d2u. ~4.2!

This system exhibits critical behavior along a line of critic
parametersx andu. We simulated the system at the critic
point, x51.0,u51.265, which was numerically determine
previously by Toral@22#.

We updated this system using the Fourier-accelera
Langevin equation described above@23#, namely,
4-3
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ALEXANDER, BOGHOSIAN, BROWER, AND KIMURA PHYSICAL REVIEW E64 066704
f i~ t1Dt !5f i~ t !1F 21FK~k!FS 2
dH
df D

1AkBTK~k!h̃~k!G , ~4.3!

where h̃(k) represents the Fourier-transformed Gauss
noise with ^h&50 and ^h2&51, and K(k) represents the
mass matrix which gives us the desired acceleration.
chose the mass matrix to be the lattice propagator of the
theory,

K~k!5
4d1m2

4(m51
d sin2~km/2!1m2

~Dt !2, ~4.4!

where the parameterm is expected to be of order 1/j or 1/L
for finite-size scaling@9#. The value of this parameter wa
adjusted during trial simulations by settingm5c/L for dif-
ferent values of the constantc. We report the results forc
54A2. As a check, we repeated the simulations with
Fourier acceleration using the pure Langevin update,

f i~ t1Dt !5f i~ t !1
Dt2

2
f ~f!1AkBTh, ~4.5!

whereh is a zero-mean unit-variance Gaussian random v
able and the force termf (f) is

f ~f!52
dH
df

52(
i 51

N S ũf i2xf i
32 (

m51

2d

f i mD . ~4.6!

Simulations were conducted forL3L system sizes where
L52, 4, 8, 16, 32, 64 using the FA Langevin update and
L52, 4 , 8, 16 for the pure Langevin case. A time step
Dt50.05 was used. Note that our time step correspond
Ae in Ref. @9# and thus should give very little discretizatio
error. We ran each system for a time that is approxima
1000 times longer the correlation time estimated from t

FIG. 2. Finite-size scaling of the correlation timet with the
linear dimensionL for Langevin and FA Langevin simulations o
f4 theory;t is in units ofDt.
06670
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simulations. The results are shown in Fig. 2. The normaliz
correlation functionsC(t)5^E(0)E(t)&/^E(0)E(0)& were
computed from the time series of the energy density. Co
lation timest for eachL were computed by fitting the regio
0.3<C(t)<0.6 to exp(2t/t). Error bars were estimated from
the standard deviation of the values oft measured from five
independent time series per system. Average energies
standard deviations of ten blocked averages were meas
for each system size and update algorithm. These results
listed in Table I.

In Fig. 2 we compare the autocorrelation times for t
pure Langevin update with those for the Fourier-Lange
case. There is clearly an acceleration. Whether the dynam
exponentz, which describes the growth of autocorrelatio
times by the scaling relationt5Lz, is actually different for
Langevin and Fourier acceleration is an interesting and o
question, and would require more extensive computat
than we have done to date. For practical simulations of s
tems far from criticality, the value ofz is often not as impor-
tant as the overall amplitude of the autocorrelation time.

V. FOURIER-ACCELERATED MOLECULAR DYNAMICS

To apply these techniques to discrete particles with a
grangian data representation, we must introduce a Fou
transform of the position coordinatesxi(t). Clearly we can-
not simply transform thexi with respect to the particle label
i 51,2, . . . ,N. As mentioned in Sec. II, these labels are ge
erally devoid of physical meaning. They have no natural
lationship to the properties of the particles or to their spa
and/or temporal configuration. Hence, the first step is to m
the particles onto a uniform spatial grid.

The mapping scheme discussed in Sec. II suggests ho
define appropriate grid coordinates. In the index method,
mappingxi→Xn is simply a relabling of the coordinates.@To
be more explicit this notation for a 2D system is expand
into components: xi[(xi ,yj ) and Xn5(Xnx ,ny

,Ynx ,ny
),

wheren5(nx ,ny) is a two-component integer vector.# Con-
sequently the Langevin dynamics is unaffected,

Xn~ t1Dt !5Xn~ t !1
fn~ t !

2mi
Dt21AkBThn~ t !Dt, ~5.1!

where we have introduced the normalized independ
Gaussian noise with variancêhh&51. Because we have
established a two-dimensional grid, we may now try to a

TABLE I. Mean energies and errors for each system size
update method. Errors are standard deviations from ten bloc
averages.

System Heat bath Langevin FA
size Value Error Value Error Value Error

L52 0.481 60.016 0.496 60.061 0.473 60.043
L54 3.174 60.041 3.180 60.40 3.291 60.30
L58 14.54 60.16 14.65 60.98 14.87 60.52
L516 61.16 60.48 62.58 61.6
L532 251.5 61.6 260.6 63.6
4-4
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FOURIER ACCELERATION OF LANGEVIN MOLECULAR . . . PHYSICAL REVIEW E64 066704
celerate the dynamics simply by going to Fourier space
described above for a generic lattice field theory. The fie
are now the position vectors of each particle. As we w
demonstrate numerically in Sec. VI, this grid is indeed use
for a two-dimensional Lennard-Jones fluid.

VI. TWO-DIMENSIONAL LENNARD-JONES FLUID

Motivated by the successful application of Fourier acc
eration to decorrelate latticef4 systems, we have tested i
ability to reduce the autocorrelation time of a system
Lennard-Jones atoms in two dimensions using the in
method.

The Lennard-Jones interaction potential is given by

VLJ~r !54eS s12

r 12
2

s6

r 6 D . ~6.1!

In our simulations we chosee5s51, a potential cutoff at
2.5s, and worked at the liquid-vapor critical point, with tem
perature and density parametersT5Tc50.47 andrc50.35,
respectively. Both pure Langevin MD and FAMD we
tested forN516 and 64 particles with periodic bounda
conditions. Each system was evolved on the order of7

integration steps withDt50.005. This time step allowed u
to accurately determine the critical thermodynamic qua
ties. The acceleration kernel we used in FAMD was identi
in form to the one we applied to thef4 model, namely,

e~k!5
4d11/N

4(m51
d sin2~km/2!11/N

~Dt !2, ~6.2!

whereN is now the number of particles in the system. Th
should be compared to Eq.~4.4!.

We allowed the system to evolve for 106 steps before
statistics were taken. To compare the effectiveness of
Fourier acceleration, we examined the autocorrelation
various long-wavelength modes of the system. In particu
we looked at the circularly averaged time autocorrelation
the cosine-transformed density. InD spatial dimensions, we
write dk5kD21dkdV, wherek5uku anddV is the direction
differential, so the cosine-transformed density is

r~k,t !5(
i

N

cos~k•xi !. ~6.3!

The autocorrelation that we measure is then

A~k,t![
*dVr~k,t1t!r~k,t !

*dV
, ~6.4!

TABLE II. Correlation times in~integration time steps! for dif-
ferent wavelengths forN516 particles.

Wave number FAMD Langevin
Value Error Value Error

n51 12000 63000 80000 612000
n52 3300 6500 22000 64000
n54 1100 6130 8600 6600
06670
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wherek52pn/L, andL is the linear dimension of the sys
tem.

In Tables II and III, we show the autocorrelation times f
various modes in both Langevin and FAMD simulations.
seen from the tables, the FAMD dynamics is clearly mo
efficient at decorrelating long-wavelength modes. A prec
measure of the gain over standard Langevin MD was
possible, because standard Langevin MD has a very l
correlation time. We therefore do not know exactly ho
much faster FAMD is. Moreover, whether or not there
simply a decrease in the amplitude of decorrelation time
an actual decrease in its algebraic form is not known.
with the precise determination ofz for the f4-model simu-
lation, that will require considerably more computational e
fort which we postpone to future work.

Finally, we limited our investigation to a maximum o
only 64 particles to allow us to equilibrate the system at
critical point using Langevin dynamics. We expect that ga
over standard Langevin MD will be ever more significant
the number of particles increases, both at and away from
critical point.

VII. DISCUSSION

We have described a Fourier-based Langevin scheme
pable of accelerating the dynamics of particulate syste
with a Lagrangian data representation. We have dem
strated that there is great potential in speeding up the dyn
ics of long-wavelength modes. One issue related to the
celerated dynamics that will be addressed in future rese
is the following. Does this method offer even more of a ga
when it is applied to molecular systems with nonconserv
order parameters~for example, dipolar systems or system
with structural phase transitions!? We believe that our pre
liminary computational investigations of Fourier metho
have shown great promise, and we intend to explore this
other questions in detail in future work.
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TABLE III. Correlation times in~integration time steps! for dif-
ferent wavelengths forN564 particles.

Wave number FAMD Langevin
Value Error Value Error

n51 40000 613000 1200000 6130000
n52 15000 62000 310000 660000
n54 4200 6700 40000 64000
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